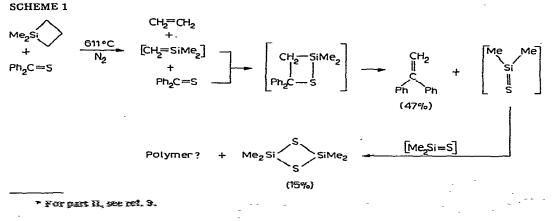
Journal of Organometallic Chemistry, 101 (1975) 171–175 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SILICON-CARBON MULTIPLE-BONDED $(p_{\pi}-p_{\pi})$ INTERMEDIATES

III*. REACTIONS OF THIOBENZOPHENONE WITH THERMALLY GENERATED 1,1-DISUBSTITUTED 1-SILAETHENES, [R₂Si=CH₂]: EVIDENCE FOR A p_{π} - p_{π} SILICON-SULFUR DOUBLE-BONDED SPECIES

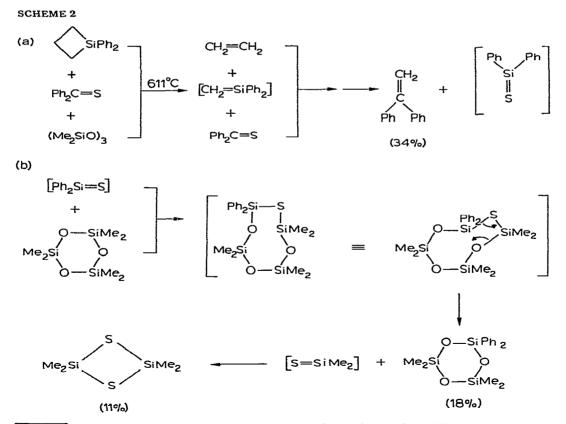

L.H. SOMMER* and J. McLICK

Department of Chemistry, University of California, Davis, California 95616 (U.S.A.) (Received May 5th, 1975)

Summary

Reactions of $[R_2Si=CH_2]$ (R = Me, Ph), generated by thermolysis of the corresponding 1,1-disubstituted silacyclobutane at 611°C, with Ph₂C=S are described. A Wittig-like reaction takes place, yielding Ph₂C=CH₂ and what are believed to be the first examples of transient $[R_2Si=S]$.

It has previously been shown that when the reactive intermediate $[R_2Si=-CH_2]$ (formed by vapor phase thermolysis of the corresponding 1,1-disubstituted silacyclobutane) is generated in the presence of a nonenolizable ketone such as benzophenone Ph₂C=O, a Wittig-like reaction takes place giving Ph₂C=CH₂ and transient monomeric $[R_2Si=O]$ [1]. In exploring the scope of this reaction we wondered whether $[R_2Si=CH_2]$ would react in a like manner with thiobenzo-



phenone $Ph_2C=S^*$ and give $[R_2Si=S]$. We report here evidence that this is indeed the case.

Scheme 1 indicates the reactants and products of an initial experiment and includes the mechanism we believe accounts for the transformation.

Specifically a benzene solution of 1,1-dimethylsilacyclobutane (5.0 mmol) and thiobenzophenone (3.4 mmol) was pyrolyzed at 611° C using the general procedure and equipment described earlier for generation of [Me₂Si=O] [1]. The products were isolated from the reaction mixture by preparative GLC. 1,1-Diphenylethylene (47% yield) was identified by its IR and NMR spectra, and the silicon—sulfur product, tetramethylcyclodisilthiane (Me₂SiS)₂, (15% yield) was identified by its melting point and NMR spectrum. Minor products, detected by analytical GLC, were not identified.

As previously reported [1], formation of $[Me_2Si=O]$ in the vapor phase leads mainly to stable derivatives of itself in the form of the cyclic trimer $(Me_2SiO)_3$ and tetramer $(Me_2SiO)_4$, the dimer evidently being unstable, indeed an unknown compound. By contrast $[Me_2Si=S]$ readily forms its cyclic dimer $(Me_2SiS)_2$, a crystalline compound [3]. It should be noted that the corresponding trimer $(Me_2SiS)_3$ is converted to the dimer at temperatures above 200°C [3]. In our experiments we isolated only the dimer, although small amounts of the trimer may have been present.

* Thiobenzophenone is known to react analogously to benzophenone in the Wittig reaction [2].

We also thermolyzed 1,1-diphenylsilacyclobutane in the presence of thiobenzophenone, predicting the formation of transient $[Ph_2Si=S]$ and its dimerization to give $(Ph_2SiS)_2$. However we did not detect this product in the reaction mixture, using analytical GLC and independently synthesized [4] $(Ph_2SiS)_2$ as a reference standard. Unfortunately, the trimer, $(Ph_2SiS)_3$, is not sufficiently volatile to allow analysis by analytical GLC. Attempts to crystallize $(Ph_2SiS)_3$ from the reaction mixture were also unsuccessful. Firm indication that transient $[Ph_2Si=S]$ was formed, however, was given by the fact the expected olefinic coproduct, i.e. 1,1-diphenylethylene, was obtained in 25% yield.

While due to difficulties in product analysis the fate of our predicted $[Ph_2Si=S]$ intermediate in the above reaction remains unknown, we are able to demonstrate its existence from the results of an additional experiment, in which a trapping agent for $[Ph_2Si=S]$ was added to the reaction mixture prior to thermolysis. The trapping agent, cyclic $(Me_2SiO)_3$ has previously been shown [5] to trap $[Me_2Si=O]$ by insertion into the ring, to give zing expansion by one Si-O unit. Thus we expected analogous ring expansion by insertion of one Si-S unit. This appears to be the case, except that the ring-expanded species is unstable with respect to two other species, the observed products which are shown in Scheme 2.

The products, $[Me_2Si=S]$ dimer (11% yield) and 1,1,3,3-tetramethyl-5,5diphenylcyclotrisiloxane (18% yield), can be readily explained by extrusion of $[Me_2Si=S]$ from the ring expanded species.

In our view these initial experiments clearly implicate $[R_2Si=S]$ as a reactive intermediate quite analogous to $[R_2Si=O]$, $[R_2Si=CH_2]$, and $[R_2Si=NR']$ [6]. While their bonding nature needs yet to be elucidated exactly, these species continue to unfold interesting chemistry.

Experimental

Thermolysis of 1,1-dimethylsilacyclobutane in the presence of thiobenzophenone

This thermolysis, as well as the others reported below, was carried out at 611°C in a stream of nitrogen (flow rate 25 ml/min) within a quartz tube heated in a 750 Watt furnace. The thermolysate was collected in a cold trap at 0°C. A detailed description of the apparatus and general procedure has been published previously [1].

A solution consisting of 0.500 g (5.0 mmol) of 1,1-dimethylsilacyclobutane [1], 0.674 (3.4 mmol) of thiobenzophenone [7] and 2.0 ml of benzene was thermolyzed with an addition time of 7.6 min. An additional 2.0 ml of benzene was slowly passed through the heated tube as a wash, combining in the cold trap with the original pyrolysis fraction to give 4.0 ml of product solution colored blue by a small amount of unreacted thiobenzophenone.

Resolution of the product mixture by preparative GLC (general method described previously [1]) gave 0.046 g (15% yield) of crystalline tetramethylcyclodisilthiane (Me₂SiS)₂, identified by its m.p. (109-111°C, lit. [3] 108-110°C) and NMR spectrum [8] (Si-CH₃ singlet at δ 0.72 ppm), and 0.288 g (47% yield) of 1,1-diphenylethylene identified by comparison of its IR and NMR spectra with those of authentic material. Minor components of the reaction mixture, including unreacted thiobenzophenone, were not collected.

Thermolysis of 1,1-diphenylsilacyclobutane in the presence of thiobenzophenone

A solution consisting of 0.557 g (2.5 mmol) of 1,1-diphenylsilacyclobutane [1], 0.337 g (1.7 mmol) of thiobenzophenone, and 2.0 ml of benzene was thermolyzed with an addition time of 9.2 min. An additional 2.0 ml of benzene was then passed through the thermolysis tube, giving a total of 4.2 ml of blue-green solution in the cold trap.

GLC analysis of the solution showed the presence of 1,1-diphenylethylene plus a number of minor components. However no chromatogram peak corresponding to the expected silicon—sulfur product, $(Ph_2SiS)_2$, was observed. The retention time of this compound in the chromatogram was ascertained by the addition of authentic $(Ph_2SiS)_2$, independently synthesized [4], to a sample of the product mixture. It was further found that the corresponding trimer $(Ph_2SiS)_3$, also independently synthesized [4], is insufficiently volatile to show a peak in the chromatograph, even at column temperatures of 260°C. Thus if $(Ph_2SiS)_3$ is formed in the above thermolysis, we could not detect it by our GLC analysis. Attempts to crystallize this possible product (m.p. 186°, ref. 4) from the product mixture met with failure. Preparative GLC gave 0.077 g (25% yield) of 1,1-diphenylethylene, identified by its IR spectrum.

Thermolysis of 1,1-diphenylsilacyclobutane in the presence of thiobenzophenone and trapping agent $(Me_2SiO)_3$

A solution consisting of 0.557 g (2.5 mmol) of 1,1-diphenylsilacyclobutane, 0.337 g (1.7 mmol) of thiobenzophenone, 0.754 g (3.4 mmol) of hexamethylcyclotrisiloxane, and 2.0 ml of benzene was thermolyzed with an addition time of 10.1 min. An additional 2.0 ml of benzene was passed through the thermolysis tube, giving a total of 4.8 ml of blue-green solution in the cold trap.

Resolution of the product mixture gave 0.0157 g (11% yield) of crystalline tetramethylcyclodisilthiane, m.p. 109-111°C (lit. [3] 108-110°C), 0.1056 g (34% yield) of 1,1-diphenylethylene identified by its IR spectrum, and 0.1069 g (18% yield) of 1,1,3,3-tetramethyl-5,5-diphenylcyclotrisiloxane identified by its IR, NMR and mass spectra. Mass spectrum major peaks m/e (rel. int.) 346(46), 331(100), 315(9.7), 269(23), 253(82). Exact mass measurement on the 346 peak, found: 346.0891. C₁₆H₂₂O₃Si₃ calcd.: 346.0877. NMR (CCl₄) δ 0.12 Si-CH₃ singlet plus aromatic protons. IR (CCl₄) 1430s (Si-Ph), 1260s (Si-CH₃), 1120s, 1130s (Si-Ph), 1050s cm⁻¹ (Si-O-Si)*.

Acknowledgement

.

The authors are grateful to the National Science Foundation for generous

174

^{*} One of the referees suggested that formation of the observed products might follow a mechanistic pathway other than that given in Scheme 2. His suggestion, that 1,1-diphenyl-1-silaethene inserts into (Me₂SiO)₃ followed by splitting out of 1,1-dimethyl-1-silaethene which then gives tetramethylcyclodisilthiane, was shown to be incorrect by a control experiment utilizing 1,1-diphenyl-1-silacyclobutane and (Me₂SiO)₃. These gave the 1/1 adduct from the insertion of Ph₂Si=CH₂ into the

Si-O bond of (Me₂SiO)₃ as a stable isolable compound, and none of the 1,1,3,3-tetramethyl-5,5diphenylcyclotrisiloxane, expected on the basis of the referee's hypothesis.

support of this work. We also thank Dr. C. Golino and Mr. R. Bush for helpful advice.

References

- 1 C.M. Golino, R.D. Bush, D.N. Roark and L.H. Sommer, J. Organometal. Chem., 66 (1974) 29.
- 2 U. Schöllkopf, Angew. Chem., 71 (1959) 260.
- 3 H. Kriegsman and H. Clauss, Z. Anorg. Allgem. Chem., 300 (1959) 210.
- 4 D.L. Mayfield, R.A. Flath and L.R. Best, J. Org. Chem., 29 (1964) 2444.
- 5 C.M. Golino, R.D. Bush and L.H. Sommer, Abstr. 167th Nat. Meeting, Amer. Chem. Soc., ORGN 005, 1974.
- 6 C.M. Golino, R.D. Bush and L.H. Sommer, J. Amer. Chem, Soc., 96 (1974) 614.
- 7 B.F. Gofton and E.A. Braude, Org. Syn., Coll. Vol. IV, (1963) 927.
- 8 K. Modritzer, J.R. Van Wazer and C.H. Dungan, J. Chem. Phys., 42 (1965) 2478.
- 9 R.D. Bush, C.M. Golino, G.D. Homer and L.H. Sommer, J. Organometal. Chem., 80 (1974) 37.